
HySIA Manual (version 0.1.1)

Daisuke Ishii dsksh@acm.org

March 3, 2017

HySIA is a reliable simulator and verifier for hybrid systems. HySIA supports
nonlinear hybrid automata (HAs) whose ODEs, guards, and reset functions are
specified with nonlinear expressions. It assumes a deterministic class of HA; a
transition to another location happens whenever a guard condition holds. Main
functionalities of HySIA are as follows:

Simulation. HySIA simulates anHAbased on interval analysis; it computes an
overapproximation of a bounded trajectory that is composed of boxes (i.e., closed
interval vectors) and parallelotopes (linear transformation of boxes). Intensive
use of interval analysis techniques distinguishes HySIA from other reachability
analysis tools. First, the simulation process carefully reduces wrapping effect
that can expand an enclosure interval. As a result, HySIA is able to simulate
HA for more number of steps than other overapproximation-based tools; e.g., it
can simulate a periodic bouncing ball for more than a thousand steps. Second,
HySIA assures the soundness of each interval computation, so that the resulting
overapproximation is verified to contain a theoretical trajectory. See Reference [2]
for details of the underlying method.

Monitoring. HySIA takes a temporal property as an input and monitors
whether a simulated trajectory satisfies the property; otherwise, HySIA computes
(an interval overapproximation of) a robustness signal for the property. The
verification process is based on amonitoring procedure of the signal temporal logic
(STL) formulas [5], which is extended to handle overapproximation of trajectories.
See Reference [3] for more details.

1 Short Tutorial
HySIA provides a specification language for hybrid automata and temporal logic
properties. An HA is simulated and analyzed about a property using the hysia
command. This section exemplifies the modeling, simulation, and verification of
an HA using HySIA.

1

1.1 Modeling Hybrid Automata
Below is an example specification that describes a simple bouncing ball model
(bb.ha):

1 (* first part *)
2 let g = 1
3 let c = 0.9
4 let pertb = [-1e-5, 1e-5]
5

6 (* second part *)
7 var y, vy
8

9 init Loc, 1+pertb, 0+pertb
10

11 at Loc wait vy, -g
12 once (y, -vy) goto Loc then y, -c*vy
13 end
14

15 (* third part *)
16 param order = 20
17 param t_max = 100
18 param dump_interval = 0.1

The specification consists of three parts. The first part (Lines 1–4) defines three
constants g, c, and pertb to be used in the second part. The values of constants
can be either real values or intervals.

The second part (Lines 6–13) describes an HA. Line 7 declared the state
variables y and vy of the HA, which are evaluated over timeline. Line 9 describes
the initial state as a comma-separated list of a location and values for each state
variable. Lines 11–13 defines a location named Loc. After the keyward wait,
the derivatives of the state variable are specified as d

dty = vy and d
dtvy = −g. At

Line 12, an inter-location transition is specified. The tuple after once tells that the
guard condition for this transition is y = 0 ∧ vy > 0. (Only the left-hand side of
the implicit form is described.) Whenever the guard is satisfied, an execution will
transit to the same location Loc with a reset of the state variables as y := y and
vy := −c vy.

The last part (Lines 15–18) configures some parameters of the simulator imple-
mentation, i.e., the order order of Taylor coefficient expansion, the time horizon
t_max of a continuous state evolution, and dump_interval that bounds the step
size when computing a dumped data.

In general, an HA consists of multiple locations. The bouncing ball system

2

5 10 15

-1.5

-1.0

-0.5

0.5

1.0

Figure 1: Dumped trajectory enclosure of the bouncing ball example

can be modeled with two locations by modelling the second part as follows:

1 init Fall, 1+pertb, -0+pertb
2

3 at Fall wait vy, -g
4 once (y, vy) goto Rise then y, -c*vy
5 end
6

7 at Rise wait vy, -g
8 once (vy, -y) goto Fall then y, vy
9 end

1.2 Simulation of a Model
Once a specification is prepared, a user can simulate the model for 10 transitions
with the following command:

$ hysia bb.ha -n 10 -dump

The option -dump let HySIA to output the result of the simulation to the file
pped.dat in a JSON format. The output data consists of a set of boxes (interval
vectors) that encloses the trajectories of the HA. (In this example, the interval value
pertb allows perturbation of trajectories; these trajectories are enclosed within
the boxes.) The result can be visualized as shown in Figure 1.

Simulation and verification of HySIA are all computed with validated interval
analysis. Thus, a resulting interval enclosure of a system’s state expands as longer

3

the simulation length and more the wrapping effect occurs. However, thanks to the
underlying parallelotope-based simulation method for wrapping effect reduction,
HySIA is able to simulate a large number of jumps for various HA. Indeed, for
the bouncing ball model, when we modify the parameter values as c = 1 and
pertb = 0, HySIA can simulate for more than a thousand steps.

As we have seen so far, HySIA allows models to involve some uncertainties
derived by interval values. HySIA computes (the overapproximation of) the reach-
able region with respect to the uncertainties. However, here we may encounter a
drawback ofHySIA; a simulation is not always successful butmay result in an error.
When we modify the value of pertb to a slightly large interval [-1e-4, 1e-4]
and run a simulation, hysia will output as follows:

$ hysia bb.ha -n 10 -dump
step 0 (0.000000 < inf) at Loc
step 1 (1.414043 < inf) at Loc
step 2 (3.959155 < inf) at Loc
step 3 (6.249714 < inf) at Loc
step 4 (8.310768 < inf) at Loc
step 5 (10.163552 < inf) at Loc
step 6 (11.809965 < inf) at Loc
libc++abi.dylib: terminating with uncaught exception of type std::
runtime_error: zero in the derivative
Abort trap: 6

The simulation fails after the sixth jump. The output implies that HySIA fails in the
detection of a discrete change because a state enclosure becomes too large. In fact,
in each detection, HySIA checks whether the orientation between the trajectory
and the guard is regular enough so that it is sure that each trajectory within an
enclosure satisfies the guard.

1.3 Verification of STL Properties
HySIA provides a function for verifying properties described in the signal temporal
logic (STL). For example, we can add an STL property

1 prop G[0,10] F[0,1] y-0.3

in the above mentioned model. (It should be added in between the second and
third parts.) The property intuitively claims that, for the duration of 10 time units,
the height of the ball (y) goes beyond 0.3 (y-0.3 is interpreted as y − 0.3 > 0)
within every duration of 1 time unit.

The verification can be done with the following command:

4

$ hysia bb.ha -a

The hysia command calculates the necessary simulation length for the verification
(in this case, 11 time units), performs a simulation, and evaluates the satisfiability
of this property. Accordingly, the verification succeeds with the following output:

$ hysia bb.ha -a
step 0 (0.000000 < 11.000000) at Loc
step 1 (1.414196 < 11.000000) at Loc
step 2 (3.959734 < 11.000000) at Loc
step 3 (6.250722 < 11.000000) at Loc
step 4 (8.312608 < 11.000000) at Loc
step 5 (10.168295 < 11.000000) at Loc
true, 0.036239

2 Getting the Tool
The HySIA tool can be obtained and used in three ways.

2.1 Web Demonstration
A web demonstration site is available at:

http://bit.ly/hysia

Through a web browser, you can access a GUI, load the basic examples, modify
the HA/STL specification, simulate, and verify the specification.

2.2 Docker Image
For those who are familier with Docker,1 Docker containers are available at:

https://hub.docker.com/r/dsksh/

The image dsksh/hysia-web contains the server program for the web demon-
stration. A container can be launched by:

$ docker run -p 8080:80 dsksh/hysia-web

Then, the server will be available at:

http://localhost:8080

1https://www.docker.com/

5

2.3 Source Distribution
The HySIA source code is distributed via GitHub:

https://github.com/dsksh/hysia.

Requirements

In addition to a standard UNIX-like environment, the following softwares are
required to compile HySIA:

• C/C++ compiler. We have compiled with both gcc (versions 4.7.4–4.8.4)
and clang (Apple LLVM version 8).

• OCaml compiler. We have tested with versions 3.12–4.02.

• CAPD library.2 HySIA is built on an old release of the CAPD-DynSys
3.0 library, which was distributed around 2014, and is not available on the
official site. A (slightly modified) source package is available at:

https://www.dropbox.com/s/3uf7t2nsizfebno/capdDynSys-201406.zip

• Boost library.3 HySIA uses shared_ptr.

• OUnit.4 Optional for test cases compilation.

• Eliom.5 Optional for building the web application.

Build

In the root directory of the source code, HySIA can be compiled with:

$./configure; make

When compilation succeeds, the program file

src_ocaml/hss.opt

is generated.

2http://capd.ii.uj.edu.pl/
3http://www.boost.org/
4http://ounit.forge.ocamlcore.org/
5http://ocsigen.org/eliom/

6

3 Examples

3.1 Simple Rotation System
TBD.

3.2 Bouncing Planet
TBD.

4 Reference Manual

4.1 Command-Line Tool
The basic syntax for the command-line execution is as follows:
〈command〉 ::= ‘hysia’ 〈options〉 〈filename〉
The hysia command accepts the following options:
-h, -help, or �help Displays a summary of the options accepted by the com-

mand.

-n Specifies the number steps to simulate (default is∞).

-t Specifies the max simulation time (default is∞).

-a Decides the simulation length automatically from the STL property.

-g Sets the debug flag.

-dump Activates dumping plot to the file “pped.dat.”

-cm_thres Sets the threshold for character matrix selection.
The option -cm_thres specifies the character matrix B to be used in the

parallelotope method (see the corresponding publication for the detail). It is
selected as follows:

• −1: B := (midJ)A.

• 0: B := I (i.e., identity matrix).

• 1: B := orthogonalize((midJ)A).

• n > 1 (default):

B :=

{
(midJ)A if κ((midJ)A) < n
orthogonalize((midJ)A) otherwise.

7

4.2 Solving Parameters
order Order of Taylor expansion.

t_max Max time horizon assumed in the simulation of each step.

h_min Min time CAPD integration can take.

epsilon Specifies the precision of the event detection.

dump_interval Sets the precision of the dumped flowpipe data.

delta Parameter for the box inflation process.

tau Parameter for the box inflation process.

cm_thres Parameter for the character matrix selection.

4.3 Specification Language
This section describes the grammar of the specification language of HySIA. A
specification consists of the definition of a hybrid automaton, an STL formula, and
solving parameter configurations.

4.3.1 Lexical conventions

The lexical class of digits, letters, and identifiers is the following:

〈digit〉 ::= [‘0’–‘9’]

〈letter〉 ::= [‘a’–‘z’ ‘A’–‘Z’]

〈id〉 ::= 〈letter〉 (〈digit〉 | 〈letter〉 | ‘_’)*

The syntax of various numeral expressions is as follows:

〈integer〉 ::= 〈digit〉+

〈float〉 ::= 〈digit〉+ (‘.’ 〈digit〉*)? ((‘e’|‘E’) (‘+’|‘-’)? 〈digit〉+)?

〈float-pn〉 ::= 〈float〉 | ‘-’ 〈float〉

〈interval〉 ::= 〈interval-noun〉 | 〈float-pn〉

〈interval-noun〉 ::= ‘(’ 〈float-pn〉 ‘,’ 〈float-pn〉 ‘)’

8

〈interval-list〉 ::= 〈interval〉 〈interval-list-rest〉
| ‘(’ 〈interval〉 〈interval-list-rest〉 ‘)’

〈interval-list-rest〉 ::= ‘,’ 〈interval〉 〈interval-list-rest〉 | 〈empty〉

Comments. Comments are either enclosed between (* and *) (can be nested) or
prefixed with #.

4.3.2 Toplevel syntax

The syntax for the toplevel of specifications is the following:

〈specification〉 ::= 〈statement〉+ 〈property〉? 〈solver-param〉*

〈statement〉 ::= ‘let’ 〈id〉 ‘=’ 〈interval〉
| ‘let’ 〈id〉 ‘=’ ‘R’ 〈float〉
| ‘var’ 〈var-list〉
| ‘init’ 〈expr-list〉
| ‘at’ 〈id〉 〈flow〉 〈invariant〉? 〈edge〉* ‘end’

〈property〉 ::= ‘prop’ 〈stl-formula〉

〈solver-param〉 ::= ‘param’ 〈id〉 ‘=’ 〈float-pn〉

〈flow〉 ::= ‘wait’ 〈expr-list〉

〈invariant〉 ::= ‘inv’ 〈expr-list〉

〈edge〉 ::= (‘when’ | ‘once’) ‘(’ 〈expr〉 ‘,’ 〈expr-list〉 ‘)’ ‘goto’ 〈id〉
‘then’ 〈expr-list〉

4.3.3 Expressions

The operators and function application in expressions have the priorities and
associativities as shown in the table below (from lowest to greatest priority):

construct associativity
‘+’, ‘-’ left
‘*’, ‘/’ left
function application left
‘ˆ’, ‘-’ (unary) —

The syntax for expressions is the following:

9

〈expr〉 ::= 〈expr〉 ‘+’ 〈expr〉 | 〈expr〉 ‘-’ 〈expr〉
| 〈expr〉 ‘*’ 〈expr〉 | 〈expr〉 ‘/’ 〈expr〉
| ‘-’ 〈expr〉 | 〈expr〉 ‘^’ 〈integer〉
| 〈function〉 〈expr〉
| 〈id〉 | 〈interval〉
| ‘(’ 〈expr〉 ‘)’

〈function〉 ::= ‘sqrt’ | ‘exp’ | ‘log’ | ‘sin’ | ‘cos’ | ‘atan’ | ‘asin’ | ‘acos’

〈expr-list〉 ::= 〈expr〉 〈expr-list-rest〉 | ‘(’ 〈expr〉 〈expr-list-rest〉 ‘)’

〈expr-list-rest〉 ::= ‘,’ 〈expr〉 〈expr-list-rest〉 | 〈empty〉

4.3.4 STL formulae

The operators in formulae have the following priorities and associativities:

construct associativity
‘->’ right
‘|’ right
‘&’ right
‘U [·,·]’ right
‘G [·,·]’, ‘F [·,·]’ —
‘!’ —

The syntax for formulae is the following:

〈stl-formula〉 ::= ‘true’ | ‘false’
| 〈id〉 | 〈expr〉
| ‘!’ 〈stl-formula〉
| 〈stl-formula〉 (‘&’|‘|’|‘->’) 〈stl-formula〉
| (‘F’|‘G’) 〈noun-interval〉 〈stl-formula〉
| 〈stl-formula〉 ‘U’ 〈noun-interval〉 〈stl-formula〉
| ‘(’ 〈stl-formula〉 ‘)’

References
[1] A. Donzé, T. Ferrère, O. Maler: Efficient Robust Monitoring for STL, Proc.

of CAV, pp. 264–279, LNCS 8044, 2013.

[2] A. Goldsztejn, D. Ishii: A Parallelotope Method for Hybrid System Simula-
tion, Reliable Computing, 23:163–185, 2016.

10

[3] D. Ishii, N. Yonezaki, A. Goldsztejn: Monitoring Temporal Properties us-
ing Interval Analysis. IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences, E99-A, 2016.

[4] D. Ishii, N. Yonezaki, A. Goldsztejn: Monitoring Bounded LTL Properties
Using Interval Analysis. Proc. of 8th International Workshop on Numerical
Software Verification (NSV), ENTCS 317, pp. 85–100, 2015.

[5] O. Maler and D. Nickovic: Monitoring Temporal Properties of Continuous
Signals, Proc. of FORMATS, pp. 152–166, LNCS 3253, 2004.

11

